Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes.

نویسندگان

  • Patricia Y Scaraffia
  • Guanhong Tan
  • Jun Isoe
  • Vicki H Wysocki
  • Michael A Wells
  • Roger L Miesfeld
چکیده

We demonstrate the presence of an alternate metabolic pathway for urea synthesis in Aedes aegypti mosquitoes that converts uric acid to urea via an amphibian-like uricolytic pathway. For these studies, female mosquitoes were fed a sucrose solution containing (15)NH4Cl, [5-(15)N]-glutamine, [(15)N]-proline, allantoin, or allantoic acid. At 24 h after feeding, the feces were collected and analyzed in a mass spectrometer. Specific enzyme inhibitors confirmed that mosquitoes incorporate (15)N from (15)NH4Cl into [5-(15)N]-glutamine and use the (15)N of the amide group of glutamine to produce labeled uric acid. More importantly, we found that [(15)N2]-uric acid can be metabolized to [(15)N]-urea and be excreted as nitrogenous waste through an uricolytic pathway. Ae. aegypti express all three genes in this pathway, namely, urate oxidase, allantoinase, and allantoicase. The functional relevance of these genes in mosquitoes was shown by feeding allantoin or allantoic acid, which significantly increased unlabeled urea levels in the feces. Moreover, knockdown of urate oxidase expression by RNA interference demonstrated that this pathway is active in females fed blood or (15)NH4Cl based on a significant increase in uric acid levels in whole-body extracts and a reduction in [(15)N]-urea excretion, respectively. These unexpected findings could lead to the development of metabolism-based strategies for mosquito control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of dengue virus in Aedes aegypti and Aedes albopictus spp. of mosquitoes: A study in Khyber Pakhtunkhwa, Pakistan

Dengue is a vector-borne disease caused by dengue virus. According to the recent report of CDC that one-third population of the world are at high risk with Dengue fever. The prevalence of the dengue hemorrhagic fever was found more in tropical and sub-tropical regions of the world. Aedes mosquitoes was reported as the main cause of transmission of dengue virus. So the current study was planned ...

متن کامل

Phylogenetic Analysis of Aedes aegypti Based on Mitochondrial ND4 Gene Sequences in Almadinah, Saudi Arabia

Background: Aedes aegypti is the main vector of the yellow fever and dengue virus. This mosquito has become the major indirect cause of morbidity and mortality of the human worldwide. Dengue virus activity has been reported recently in the western areas of Saudi Arabia. There is no vaccine for dengue virus until now, and the control of the disease depends on the control of the vector. Objectiv...

متن کامل

Urea Synthesis and Excretion in Aedes aegypti Mosquitoes Are Regulated by a Unique Cross-Talk Mechanism

Aedes aegypti mosquitoes do not have a typical functional urea cycle for ammonia disposal such as the one present in most terrestrial vertebrates. However, they can synthesize urea by two different pathways, argininolysis and uricolysis. We investigated how formation of urea by these two pathways is regulated in females of A. aegypti. The expression of arginase (AR) and urate oxidase (UO), eith...

متن کامل

Study of the fragmentation of arginine isobutyl ester applied to arginine quantification in Aedes aegypti mosquito excreta.

It has been demonstrated that argininolysis and uricolysis are involved in the synthesis and excretion of urea in Aedes aegypti female mosquitoes. To further investigate the metabolic regulation of urea in female mosquitoes, it is desirable to have a rapid and efficient method to monitor arginine (Arg) concentration in mosquito excreta. Thus, a procedure currently used for the identification of...

متن کامل

The insulin/TOR signal transduction pathway is involved in the nutritional regulation of juvenile hormone synthesis in Aedes aegypti.

Juvenile hormone (JH) levels must be modulated to permit the normal progress of development and reproductive maturation in mosquitoes. JH is part of a transduction system that assesses nutritional information and controls reproduction in mosquitoes. Adult female Aedes aegypti show nutritionally-dependent dynamic changes in corpora allata (CA) JH biosynthetic activities. A coordinated expression...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 2  شماره 

صفحات  -

تاریخ انتشار 2008